
CHAPTER 11

Data Link Control

The two main functions of the data link layer are data link control and media access
control. The first, data link control, deals with the design and procedures for communi
cation between two adjacent nodes: node-to-node communication. We discuss this
functionality in this chapter. The second function of the data link layer is media access
control, or how to share the link. We discuss this functionality in Chapter 12.

Data link control functions include framing, flow and error control, and software
implemented protocols that provide smooth and reliable transmission of frames
between nodes. In this chapter, we first discuss framing, or how to organize the bits that
are carried by the physical layer. We then discuss flow and error control. A subset of
this topic, techniques for error detection and correction, was discussed in Chapter 10.

To implement data link control, we need protocols. Each protocol is a set of rules
that need to be implemented in software and run by the two nodes involved in data
exchange at the data link layer. We discuss five protocols: two for noiseless (ideal)
channels and three for noisy (real) channels. Those in the first category are not actually
implemented, but provide a foundation for understanding the protocols in the second
category.

After discussing the five protocol designs, we show how a bit-oriented protocol is
actually implemented by using the High-level Data Link Control (HDLC) Protocol as an
example. We also discuss a popular byte-oriented protocol, Point-to-Point Protocol (PPP).

11.1 FRAMING
Data transmission in the physical layer means moving bits in the form of a signal from
the source to the destination. The physical layer provides bit synchronization to ensure
that the sender and receiver use the same bit durations and timing.

The data link layer, on the other hand, needs to pack bits into frames, so that each
frame is distinguishable from another. Our postal system practices a type of framing.
The simple act of inserting a letter into an envelope separates one piece of information
from another; the envelope serves as the delimiter. In addition, each envelope defines
the sender and receiver addresses since the postal system is a many-to-many carrier
facility.

307

308 CHAPTER 11 DATA LINK CONTROL

Framing in the data link layer separates a message from one source to a destina
tion, or from other messages to other destinations, by adding a sender address and a
destination address. The destination address defines where the packet is to go; the sender
address helps the recipient acknowledge the receipt.

Although the whole message could be packed in one frame, that is not normally
done. One reason is that a frame can be very large, making flow and error control very
inefficient. When a message is carried in one very large frame, even a single-bit error
would require the retransmission of the whole message. When a message is divided
into smaller frames, a single-bit error affects only that small frame.

Fixed-Size Framing

Frames can be of fixed or variable size. In fixed-size framing, there is no need for defin
ing the boundaries of the frames; the size itself can be used as a delimiter. An example
of this type of framing is the ATM wide-area network, which uses frames of fixed size
called cells. We discuss ATM in Chapter 18.

Variable-Size Framing

Our main discussion in this chapter concerns variable-size framing, prevalent in local
area networks. In variable-size framing, we need a way to define the end of the frame
and the beginning of the next. Historically, two approaches were used for this purpose:
a character-oriented approach and a bit-oriented approach.

Character-Oriented Protocols

In a character-oriented protocol, data to be carried are 8-bit characters from a coding
system such as ASCII (see Appendix A). The header, which normally carries the source
and destination addresses and other control information, and the trailer, which carries
error detection or error correction redundant bits, are also multiples of 8 bits. To separate
one frame from the next, an 8-bit (I-byte) flag is added at the beginning and the end of a
frame. The flag, composed of protocol-dependent special characters, signals the start or
end of a frame. Figure 11.1 shows the format of a frame in a character-oriented protocol.

Figure 11.1 Aframe in a character-oriented protocol

Data from upper layer

Character-oriented framing was popular when only text was exchanged by the data
link layers. The flag could be selected to be any character not used for text communica
tion. Now, however, we send other types of information such as graphs, audio, and
video. Any pattern used for the flag could also be part of the information. If this hap
pens, the receiver, when it encounters this pattern in the middle of the data, thinks it has
reached the end of the frame. To fix this problem, a byte-stuffing strategy was added to

SECTION 11.1 FRAMING 309

character-oriented framing. In byte stuffing (or character stuffing), a special byte is
added to the data section of the frame when there is a character with the same pattern as
the flag. The data section is stuffed with an extra byte. This byte is usually called the
escape character (ESC), which has a predefined bit pattern. Whenever the receiver
encounters the ESC character, it removes it from the data section and treats the next
character as data, not a delimiting flag.

Byte stuffing by the escape character allows the presence of the flag in the data sec
tion of the frame, but it creates another problem. What happens if the text contains one or
more escape characters followed by a flag? The receiver removes the escape character,
but keeps the flag, which is incorrectly interpreted as the end of the frame. To solve this
problem, the escape characters that are part of the text must also be marked by another
escape character. In other words, if the escape character is part of the text, an extra one is
added to show that the second one is part of the text. Figure 11.2 shows the situation.

Figure 11.2 Byte stuffing and unstuffing

Frame sent

Flag Header

Stuffed

Extra 2
bytes

Frame received

Flag Header

Unstuffed

Byte stuffing is the process of adding 1 extra byte whenever
there is a flag or escape character in the text.

Character-oriented protocols present another problem in data communications.
The universal coding systems in use today, such as Unicode, have 16-bit and 32-bit
characters that conflict with 8-bit characters. We can say that in general, the tendency is
moving toward the bit-oriented protocols that we discuss next.

Bit-Oriented Protocols

In a bit-oriented protocol, the data section of a frame is a sequence of bits to be inter
preted by the upper layer as text, graphic, audio, video, and so on. However, in addition
to headers (and possible trailers), we still need a delimiter to separate one frame from
the other. Most protocols use a special 8-bit pattern flag 01111110 as the delimiter to
define the beginning and the end of the frame, as shown in Figure 11.3.

310 CHAPTER 11 DATA LINK CONTROL

Figure 11.3 A frame in a bit-oriented protocol

I'
Data from upper layer

Variable number of bits ' I
Header

Flag

This flag can create the same type of problem we saw in the byte-oriented proto
cols. That is, if the flag pattern appears in the data, we need to somehow inform the
receiver that this is not the end of the frame. We do this by stuffing 1 single bit (instead
of I byte) to prevent the pattern from looking like a flag. The strategy is called bit
stuffing. In bit stuffing, if a 0 and five consecutive I bits are encountered, an extra 0 is
added. This extra stuffed bit is eventually removed from the data by the receiver. Note
that the extra bit is added after one 0 followed by five 1s regardless of the value of the
next bit. This guarantees that the flag field sequence does not inadvertently appear in
the frame.

Bit stuffing is the process of adding one extra 0 whenever five consecutive 18 follow a 0
in the data, so that the receiver does not mistake the pattern 0111110 for a flag.

Figure 11.4 shows bit stuffing at the sender and bit removal at the receiver. Note that
even if we have a 0 after five 1s, we still stuff a O. The 0 will be removed by the receiver.

Figure 11.4 Bit stuffing and unstuffing

Frame sent

I Flag ! Header

Frame received

Data from upper layer

100011111110011111010001

Stuffed t
10001111101100111110010001 Trailer IFlag I

Extra 2
bits

IFlag 1 Header 10001111101100111110010001 Trailer 1Flag I
Unsroffed t

I0001l11l1100111110 1000I
Data to upper layer

This means that if the flaglike pattern 01111110 appears in the data, it will change
to 011111010 (stuffed) and is not mistaken as a flag by the receiver. The real flag 01111110
is not stuffed by the sender and is recognized by the receiver.

SECTION II.3 PROTOCOLS 311

11.2 FLOW AND ERROR CONTROL
Data communication requires at least two devices working together, one to send and the
other to receive. Even such a basic arrangement requires a great deal of coordination
for an intelligible exchange to occur. The most important responsibilities of the data
link layer are flow control and error control. Collectively, these functions are known
as data link control.

Flow Control

Flow control coordinates the amount of data that can be sent before receiving an acknowl
edgment and is one of the most important duties of the data link layer. In most protocols,
flow control is a set of procedures that tells the sender how much data it can transmit
before it must wait for an acknowledgment from the receiver. The flow of data must not
be allowed to overwhelm the receiver. Any receiving device has a limited speed at which
it can process incoming data and a limited amount of memory in which to store incom
ing data. The receiving device must be able to inform the sending device before those
limits are reached and to request that the transmitting device send fewer frames or stop
temporarily. Incoming data must be checked and processed before they can be used. The
rate of such processing is often slower than the rate of transmission. For this reason,
each receiving device has a block of memory, called a buffer, reserved for storing incom
ing data until they are processed. If the buffer begins to fill up, the receiver must be able
to tell the sender to halt transmission until it is once again able to receive.

Flow control refers to a set of procedures used to restrict the amount of data
that the sender can send before waiting for acknowledgment.

Error Control

Error control is both error detection and error correction. It allows the receiver to
inform the sender of any frames lost or damaged in transmission and coordinates the
retransmission of those frames by the sender. In the data link layer, the term error con
trol refers primarily to methods of error detection and retransmission. Error control in
the data link layer is often implemented simply: Any time an error is detected in an
exchange, specified frames are retransmitted. This process is called automatic repeat
request (ARQ).

Error control in the data link layer is based on automatic
repeat request, which is the retransmission of data.

11.3 PROTOCOLS
Now let us see how the data link layer can combine framing, flow control, and error control
to achieve the delivery of data from one node to another. The protocols are normally imple
mented in software by using one of the common programming languages. To make our

312 CHAPTER 11 DATA LINK CONTROL

discussions language-free, we have written in pseudocode a version of each protocol that
concentrates mostly on the procedure instead of delving into the details of language rules.

We divide the discussion of protocols into those that can be used for noiseless
(error-free) channels and those that can be used for noisy (error-creating) channels. The
protocols in the first category cannot be used in real life, but they serve as a basis for
understanding the protocols of noisy channels. Figure 11.5 shows the classifications.

Figure 11.5 Taxonomy ofprotocols discussed in this chapter

Simplest

Stop-and-Wait

Stop-and-Wait ARQ

Go-Hack-N ARQ

Selective Repeat ARQ

There is a difference between the protocols we discuss here and those used in real
networks. All the protocols we discuss are unidirectional in the sense that the data frames
travel from one node, called the sender, to another node, called the receiver. Although
special frames, called acknowledgment (ACK) and negative acknowledgment (NAK)
can flow in the opposite direction for flow and error control purposes, data flow in only
one direction.

In a real-life network, the data link protocols are implemented as bidirectional;
data flow in both directions. In these protocols the flow and error control information such
as ACKs and NAKs is included in the data frames in a technique called piggybacking.
Because bidirectional protocols are more complex than unidirectional ones, we chose the
latter for our discussion. If they are understood, they can be extended to bidirectional
protocols. We leave this extension as an exercise.

11.4 NOISELESS CHANNELS
Let us first assume we have an ideal channel in which no frames are lost, duplicated, or
corrupted. We introduce two protocols for this type of channel. The first is a protocol
that does not use flow control; the second is the one that does. Of course, neither has error
control because we have assumed that the channel is a perfect noiseless channel.

Simplest Protocol

Our first protocol, which we call the Simplest Protocol for lack of any other name, is one
that has no flow or en'or control. Like other protocols we will discuss in this chapter, it is a
unidirectional protocol in which data frames are traveling in only one direction-from the

SECTION 11.4 NOISELESS CHANNELS 313

sender to receiver. We assume that the receiver can immediately handle any frame it
receives with a processing time that is small enough to be negligible. The data link
layer of the receiver immediately removes the header from the frame and hands the data
packet to its network layer, which can also accept the packet immediately. In other
words, the receiver can never be overwhelmed with incoming frames.

Design

There is no need for flow control in this scheme. The data link layer at the sender site
gets data from its network layer, makes a frame out of the data, and sends it. The data
link layer at the receiver site receives a frame from its physical layer, extracts data from
the frame, and delivers the data to its network layer. The data link layers of the sender
and receiver provide transmission services for their network layers. The data link layers
use the services provided by their physical layers (such as signaling, multiplexing, and
so on) for the physical transmission of bits. Figure 11.6 shows a design.

Figure 11.6 The design of the simplest protocol with no flow or error control

Sender Receiver

Network

Data link

Physical

Get data Delivrdata

t I

I ...
t I

Send frame Receive frame

Data frames -+-
I ~~~~~~~ I

Network

Data link

Physical

Repeat forever

Event:)\{otifu:ation from
physlclU iaye]"

We need to elaborate on the procedure used by both data link layers. The sender site
cannot send a frame until its network layer has a data packet to send. The receiver site
cannot deliver a data packet to its network layer until a frame arrives. If the protocol is
implemented as a procedure, we need to introduce the idea of events in the protocol. The
procedure at the sender site is constantly running; there is no action until there is a request
from the network layer. The procedure at the receiver site is also constantly rulming, but
there is no action until notification from the physical layer arrives. Both procedures are
constantly running because they do not know when the corresponding events will occur.

314 CHAPTER 11 DATA LINK CONTROL

Algorithms

Algorithm 11.1 shows the procedure at the sender site.

Algorithm 11.1 Sender-site algorithm for the simplest protocol

//Send the frame

II Sleep until an event occurs
//There is a packet to send

GetData()i
MakeFrame()i
SendFrame()i

}

WaitForEvent()i
if(Event(RequestToSend»
{

1 while (true) II Repeat forever
2 {

3

4
5
6
7

8
9

10 }

Analysis The algorithm has an infinite loop, which means lines 3 to 9 are repeated forever
once the program starts. The algorithm is an event-driven one, which means that it sleeps (line 3)
until an event wakes it up (line 4). This means that there may be an undefined span of time
between the execution of line 3 and line 4; there is a gap between these actions. When the event,
a request from the network layer, occurs, lines 6 though 8 are executed. The program then repeats
the loop and again sleeps at line 3 until the next occurrence of the event. We have written
pseudocode for the main process. We do not show any details for the modules GetData, Make
Frame, and SendFrame. GetDataO takes a data packet from the network layer, MakeFrameO adds
a header and delimiter flags to the data packet to make a frame, and SendFrameO delivers the
frame to the physical layer for transmission.

Algorithm 11.2 shows the procedure at the receiver site.

Algorithm 11.2 Receiver-site algorithm for the simplest protocol

/ /Deli ver data to network layez

ReceiveFrame()i
ExtractData()i
Del iverData () i

}

1 while(true) II Repeat forever
2 {
3 WaitForEvent()i II Sleep until an event occurs
4 if(Event(ArrivalNotification» IIData frame arrived
5 {
6

7

8
9

10 }

Analysis This algorithm has the same format as Algorithm 11.1, except that the direction of
the frames and data is upward. The event here is the arrival of a data frame. After the event
occurs, the data link layer receives the frame from the physical layer using the ReceiveFrameO
process, extracts the data from the frame using the ExtractDataO process, and delivers the data to
the network layer using the DeliverDataO process. Here, we also have an event-driven algorithm
because the algorithm never knows when the data frame will arrive.

SECTION 11.4 NOISELESS CHANNELS 315

Example 11.1

Figure 11.7 shows an example of communication using this protocol. It is very simple. The
sender sends a sequence of frames without even thinking about the receiver. To send three frames,
three events occur at the sender site and three events at the receiver site. Note that the data frames
are shown by tilted boxes; the height of the box defines the transmission time difference between
the first bit and the last bit in the frame.

Figure 11.7 Flow diagram for Example 11.1

Sender Receiver

GJ [i""1
I I
I I

Request ~r=am:-e---------1 .
I ~Arri"al

Request ~ratne ~
: ~Arr~

Request~ame :
: ~Arrival
t t

Time Time

Stop-and-Wait Protocol

If data frames arrive at the receiver site faster than they can be processed, the frames
must be stored until their use. Normally, the receiver does not have enough storage
space, especially if it is receiving data from many sources. This may result in either the
discarding of frames or denial of service. To prevent the receiver from becoming over
whelmed with frames,we somehow need to tell the sender to slow down. There must be
feedback from the receiver to the sender.

The protocol we discuss now is called the Stop-and-Wait Protocol because the
sender sends one frame, stops until it receives confirmation from the receiver (okay to
go ahead), and then sends the next frame. We still have unidirectional communication
for data frames, but auxiliary ACK frames (simple tokens of acknowledgment) travel
from the other direction. We add flow control to our previous protocol.

Design

Figure 11.8 illustrates the mechanism. Comparing this figure with Figure 11.6, we can
see the traffic on the forward channel (from sender to receiver) and the reverse channel.
At any time, there is either one data frame on the forward channel or one ACK frame on
the reverse channel. We therefore need a half-duplex link.

Algorithms

Algorithm 11.3 is for the sender site.

316 CHAPTER 11 DATA LINK CONTROL

Figure 11.8 Design ofStop-and- Wait Protocol

Sender Receiver

Network

Data link:

Physical

Deliver
Gettata data..

T I

.. I ~ I
R I. T R I. ,T

ecelve Send ecelVe Send
frame frame frame frame

Data frame
I ~~ I

~DACKframe

Network

Data link

Physical

Repeat forever

Algorithm 11.3 Sender-site algorithm for Stop-and- Wait Protocol

Iwhile (true)
canSend = true

II Sleep until an event occurs
AND canSend}

II Sleep until an event occurs
/1 An ACK has arrived

I/Send the data frame
I/cannot send until ACK arrives

IIRepeat forever
IIAllow the first frame to go

I/Receive the ACK £r~eReceiveFrame();
canSend ~ true;

GetDataO i

MakeFrame();
SendFrame()i
canSend = false;

}

}

WaitForEvent()i
if (Event (ArrivalNotification)

{

{

WaitForEvent()i
if (Event (RequestToSend)
{

1

2

3
4
5

6

7
8

9
10
11

12
13
14
15
16
17
18 }

Analysis Here two events can occur: a request from the network layer or an arrival notifica
tion from the physical layer. The responses to these events must alternate. In other words, after a
frame is sent, the algorithm must ignore another network layer request until that frame is

SECTION 1I.4 NOISELESS CHANNELS 317

acknowledged. We know that two arrival events cannot happen one after another because the
channel is error-free and does not duplicate the frames. The requests from the network layer,
however, may happen one after another without an arrival event in between. We need somehow to
prevent the immediate sending of the data frame. Although there are several methods, we have
used a simple canSend variable that can either be true or false. When a frame is sent, the variable
is set to false to indicate that a new network request cannot be sent until canSend is true. When an
ACK is received, canSend is set to true to allow the sending of the next frame.

Algorithm 11.4 shows the procedure at the receiver site.

Algorithm 11.4 Receiver-site algorithm for Stop-and-Wait Protocol

WaitForEvent(); II Sleep until an event occurf
if(Event(ArrivalNotification)} IIData frame arrives
{

/IDeliver data to network layex
IISend an ACK frame

IIRepeat forever

ReceiveFrame(};
ExtractData(}i
Deliver(data};
SendFrame();

}

1 while (true)
2 {
3

4
5

6
7

8

9
10
11 }

Analysis This is very similar to Algorithm 11.2 with one exception. After the data frame
arrives, the receiver sends an ACK frame (line 9) to acknowledge the receipt and allow the sender
to send the next frame.

Example 11.2

Figure 11.9 shows an example of communication using this protocol. It is still very simple. The
sender sends one frame and waits for feedback from the receiver. When the ACK arrives, the
sender sends the next frame. Note that sending two frames in the protocol involves the sender in
four events and the receiver in two events.

Figure 11.9 Flow diagramfor Example 1I.2

Sender

INA]
Receiver

rIJ

Arrival
Frame

Arrival :
I

Request

ReqUest~~:
I Arrival
I

1. AC'i..
Arrival' I

• 1

t t
Time Time

318 CHAPTER 11 DATA LINK CONTROL

11.5 NOISY CHANNELS
Although the Stop-and-Wait Protocol gives us an idea of how to add flow control to its
predecessor, noiseless channels are nonexistent. We can ignore the error (as we some
times do), or we need to add error control to our protocols. We discuss three protocols
in this section that use error control.

Stop-and-Wait Automatic Repeat Request

Our first protocol, called the Stop-and-Wait Automatic Repeat Request (Stop-and
Wait ARQ), adds a simple error control mechanism to the Stop-and-Wait Protocol. Let
us see how this protocol detects and corrects errors.

To detect and correct corrupted frames, we need to add redundancy bits to our data
frame (see Chapter 10). When the frame arrives at the receiver site, it is checked and if
it is corrupted, it is silently discarded. The detection of errors in this protocol is mani
fested by the silence of the receiver.

Lost frames are more difficult to handle than corrupted ones. In our previous proto
cols, there was no way to identify a frame. The received frame could be the correct one,
or a duplicate, or a frame out of order. The solution is to number the frames. When the
receiver receives a data frame that is out of order, this means that frames were either
lost or duplicated.

The comlpted and lost frames need to be resent in this protocol. If the receiver does
not respond when there is an error, how can the sender know which frame to resend? To
remedy this problem, the sender keeps a copy of the sent frame. At the same time, it starts
a timer. If the timer expires and there is no ACK for the sent frame, the frame is resent, the
copy is held, and the timer is restarted. Since the protocol uses the stop-and-wait mecha
nism, there is only one specific frame that needs an ACK even though several copies of
the same frame can be in the network.

Error correction in Stop-and-Wait ARQ is done by keeping a copy of the sent frame
and retransmitting of the frame when the timer expires.

Since an ACK frame can also be corrupted and lost, it too needs redundancy bits
and a sequence number. The ACK frame for this protocol has a sequence number field.
In this protocol, the sender simply discards a corrupted ACK frame or ignores an
out-of-order one.

Sequence Numbers

As we discussed, the protocol specifies that frames need to be numbered. This is done
by using sequence numbers. A field is added to the data frame to hold the sequence
number of that frame.

One important consideration is the range of the sequence numbers. Since we want
to minimize the frame size, we look for the smallest range that provides unambiguous

SECTION 11.5 NOISY CHANNELS 319

communication. The sequence numbers of course can wrap around. For example, if we
decide that the field is m bits long, the sequence numbers start from 0, go to 2m - 1, and
then are repeated.

Let us reason out the range of sequence numbers we need. Assume we have used x as
a sequence number; we only need to use x + 1 after that. There is no need for x + 2. To
show this, assume that the sender has sent the frame numbered x. Three things can happen.

1. The frame arrives safe and sound at the receiver site; the receiver sends an acknowl
edgment. The acknowledgment arrives at the sender site, causing the sender to send
the next frame numbered x + 1.

2. The frame arrives safe and sound at the receiver site; the receiver sends an acknowl
edgment, but the acknowledgment is corrupted or lost. The sender resends the frame
(numbered x) after the time-out. Note that the frame here is a duplicate. The receiver
can recognize this fact because it expects frame x + I but frame x was received.

3. The frame is corrupted or never arrives at the receiver site; the sender resends the
frame (numbered x) after the time-out.

We can see that there is a need for sequence numbers x and x + I because the receiver
needs to distinguish between case 1 and case 2. But there is no need for a frame to be
numbered x + 2. In case 1, the frame can be numbered x again because frames x and x + 1
are acknowledged and there is no ambiguity at either site. In cases 2 and 3, the new frame
is x + I, not x + 2. If only x and x + 1 are needed, we can let x = 0 and x + I == 1. This
means that the sequence is 0, I, 0, I, 0, and so on. Is this pattern familiar? This is modulo-2
arithmetic as we saw in Chapter 10.

In Stop-and-Wait ARQ~ we use sequence numbers to number the frames.
The sequence numbers are based on modul0-2 arithmetic.

Acknowledgment Numbers

Since the sequence numbers must be suitable for both data frames and ACK frames, we
use this convention: The acknowledgment numbers always announce the sequence
number of the next frame expected by the receiver. For example, if frame 0 has arrived
safe and sound, the receiver sends an ACK frame with acknowledgment 1 (meaning
frame 1 is expected next). If frame 1 has arrived safe and sound, the receiver sends an
ACK frame with acknowledgment 0 (meaning frame 0 is expected).

In Stop-and-WaitARQ~the acknowledgment number always announces in
modul0-2 arithmetic the sequence number of the next frame expected.

Design

Figure 11.10 shows the design of the Stop-and-Wait ARQ Protocol. The sending device
keeps a copy of the last frame transmitted until it receives an acknowledgment for that
frame. A data frames uses a seqNo (sequence number); an ACK frame uses an ackNo
(acknowledgment number). The sender has a control variable, which we call Sn (sender,
next frame to send), that holds the sequence number for the next frame to be sent (0 or 1).

320 CHAPTER 11 DATA LINK CONTROL

Figure 11.10 Design of the Stop-and-WaitARQ Protocol

SII Next frame

J;0 send
r---r--- ---r---,
'0'101'0'···L ~___ _ __ 1 J

Sender Receiver

Network

Data link

Physical

Data frame ACKframe Deliver
'1* *" - rr-Get data data

I seqNo ackNo ...
T I

• I ... I
R I. T R I. T

ecelve Send ecelve Send
frame frame frame frame

I ! liM ~ I
~~

Network

Data link

Physical

Event:I Request from I
network layer

I
0Repeat forever t

. ~- - ~- -

,.C;;~AIgmnhm for sender'site .- Time-out I
..;._,,,:,,:,,'.:" , Event:

1..

I
E t: INotification from I

ven. physical layer

Repeat forever

." .'

~-. -- .AJ:go.rlt,bm for receiver Site

1..

I
E t:INotification fromIven. h' allP ySlC ayer

The receiver has a control variable, which we call Rn (receiver, next frame expected),
that holds the number of the next frame expected. When a frame is sent, the value of Sn

is incremented (modulo-2), which means if it is 0, it becomes 1 and vice versa. When a
frame is received, the value of Rn is incremented (modulo-2), which means if it is 0, it
becomes 1 and vice versa. Three events can happen at the sender site; one event can
happen at the receiver site. Variable Sn points to the slot that matches the sequence
number of the frame that has been sent, but not acknowledged; Rn points to the slot that
matches the sequence number of the expected frame.

Algorithms

Algorithm 11.5 is for the sender site.

Algorithm 11.5 Sender-site algorithm for Stop-and- Wait ARQ

WaitForEvent();

1 n = 0;
2 anSend = true;
3 hile (true)
4 {
5

II Frame 0 should be sent first
II Allow the first request to go
II Repeat forever

II Sleep until an event occurs

SECTION 11.5 NOISY CHANNELS 321

//Resend a copy check

//Copy is not needed

II The timer expired

/ /The seqNo is Sn

//Keep copy

II Sleep
II An ACK has arrived

//Receive the ACE fram
80) / /Valid ACK

Stoptimer{};
PurgeFrame(Sn_l);
canSend = true;

}

ReceiveFrame(ackNo);
if(not corrupted AND ackNo

{

}

GetData () i

MakeFrame (Sn) ;
StoreFrame(Sn);
SendFrame(Sn) ;
StartTimerO;
Sn = Sn + 1;
canSend = false;

if (Event (TimeOUt)
{

StartTimer();
ResendFrame(Sn_l);

}

}

WaitForEvent();
if (Event (ArrivaINotification)
{

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ (continued)

6 if (Event (RequestToSend) AND canSend)
7 {
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 }

Analysis We first notice the presence of Sn' the sequence number of the next frame to be sent.
This variable is initialized once (line 1), but it is incremented every time a frame is sent (line 13) in
preparation for the next frame. However, since this is modulo-2 arithmetic, the sequence numbers are
0, 1,0, 1, and so on. Note that the processes in the first event (SendFrame, StoreFrame, and Purge
Frame) use an Sn defining the frame sent out. We need at least one buffer to hold this frame until
we are sure that it is received safe and sound. Line 10 shows that before the frame is sent, it is stored.
The copy is used for resending a corrupt or lost frame. We are still using the canSend variable to pre
vent the network layer from making a request before the previous frame is received safe and sound. If
the frame is not corrupted and the ackNo of the ACK frame matches the sequence number of the next
frame to send, we stop the timer and purge the copy of the data frame we saved. Otherwise, we just
ignore this event and wait for the next event to happen. After each frame is sent, a timer is started.
When the timer expires (line 28), the frame is resent and the timer is restarted.

Algorithm 11.6 shows the procedure at the receiver site.

Algorithm 11.6 Receiver-site algorithm for Stop-and-Wait ARQ Protocol

1 = 0;
2 hile (true)
3 {
4 WaitForEvent();

II Frame 0 expected to arrive firs

II Sleep until an event occurs

322 CHAPTER 11 DATA LINK CONTROL

Algorithm 11.6 Receiver-site algorithm for Stop-and- Wait ARQ Protocol (continued)

5
6
7

8
9

10
11
12
13
14
15
16
17
18 }

if(Event(Arriva1Notification»
{

ReceiveFrame()i
if(corrupted(frame»i

sleep () i

if (seqNo ;;;;:;;;; Rn)

{

ExtractData();
De1iverData()i
Ru ;;;; Ru + 1;

}

SendFrame (Rn) ;
}

//Data frame arrives

//Valid data frame

//Deliver data

//Send an ACK

Analysis This is noticeably different from Algorithm 11.4. First, all arrived data frames that are
corrupted are ignored. If the seqNo of the frame is the one that is expected (Rn), the frame is
accepted, the data are delivered to the network layer, and the value of Rn is incremented. How
ever, there is one subtle point here. Even if the sequence number of the data frame does not match
the next frame expected, an ACK is sent to the sender. This ACK, however, just reconfirms the
previous ACK instead of confirming the frame received. This is done because the receiver
assumes that the previous ACK might have been lost; the receiver is sending a duplicate frame.
The resent ACK may solve the problem before the time-out does it.

Example 11.3

Figure 11.11 shows an example of Stop-and-Wait ARQ. Frame a is sent and acknowledged.
Frame 1 is lost and resent after the time-out. The resent frame 1 is acknowledged and the timer
stops. Frame ais sent and acknowledged, but the acknowledgment is lost. The sender has no idea
if the frame or the acknowledgment is lost, so after the time-out, it resends frame 0, which is
acknowledged.

Efficiency

The Stop-and-WaitARQ discussed in the previous section is very inefficient if our chan
nel is thick and long. By thick, we mean that our channel has a large bandwidth; by long,
we mean the round-trip delay is long. The product of these two is called the bandwidth
delay product, as we discussed in Chapter 3. We can think of the channel as a pipe. The
bandwidth-delay product then is the volume of the pipe in bits. The pipe is always there.
If we do not use it, we are inefficient. The bandwidth-delay product is a measure of the
number of bits we can send out of our system while waiting for news from the receiver.

Example 11.4

Assume that, in a Stop-and-Wait ARQ system, the bandwidth of the line is 1 Mbps, and 1 bit
takes 20 ms to make a round trip. What is the bandwidth-delay product? If the system data frames
are 1000 bits in length, what is the utilization percentage of the link?

Solution
The bandwidth-delay product is

SECTION 11.5 NOISY CHANNELS 323

Figure 11.11 Flow diagram for Example 11.3

Sender Receiver

Rn

~9_ET9Ihql!J Arrival

Rn

:~~[nQIrIqUJ Arrival

Rn

~o:-(:-o+o~-(: Arrival
1 __1__ :_J...!.1_!.._.!

Discard, duplicate

m
I
I
I

ACK 1]

---------1
1
1

t
Time

5n

Request f9"1iJ-9J]~3iff~

Sn

Request @rU9I(~qn~

5n

Time-out f9"rtr9n_:_qff~

Stop

Start cp
Stop l

Stop

Start It

5"

Time-out It Time-out :-6 ~ i+f ~0i "1-'restart ,__ !._l£J__ '__ 1__1

Time-out
restart

The system can send 20,000 bits during the time it takes for the data to go from the sender to the
receiver and then back again. However, the system sends only 1000 bits. We can say that the link
utilization is only 1000/20,000, or 5 percent. For this reason, for a link with a high bandwidth or
long delay, the use of Stop-and-Wait ARQ wastes the capacity of the link.

Example 11.5

What is the utilization percentage of the link in Example 11.4 if we have a protocol that can send
up to 15 frames before stopping and worrying about the acknowledgments?

Solution
The bandwidth-delay product is still 20,000 bits. The system can send up to 15 frames or
15,000 bits during a round trip. This means the utilization is 15,000/20,000, or 75 percent. Of
course, if there are damaged frames, the utilization percentage is much less because frames
have to be resent.

Pipelining

In networking and in other areas, a task is often begun before the previous task has ended.
This is known as pipelining. There is no pipelining in Stop-and-Wait ARQ because we
need to wait for a frame to reach the destination and be acknowledged before the next
frame can be sent. However, pipelining does apply to our next two protocols because

324 CHAPTER 11 DATA LINK CONTROL

several frames can be sent before we receive news about the previous frames. Pipelining
improves the efficiency of the transmission if the number of bits in transition is large with
respect to the bandwidth-delay product.

Go-Back-N Automatic Repeat Request

To improve the efficiency of transmission (filling the pipe), multiple frames must be in
transition while waiting for acknowledgment. In other words, we need to let more than
one frame be outstanding to keep the channel busy while the sender is waiting for
acknowledgment. In this section, we discuss one protocol that can achieve this goal; in
the next section, we discuss a second.

The first is called Go-Back-N Automatic Repeat Request (the rationale for the
name will become clear later). In this protocol we can send several frames before
receiving acknowledgments; we keep a copy of these frames until the acknowledg
ments arrive.

Sequence Numbers

Frames from a sending station are numbered sequentially. However, because we need
to include the sequence number of each frame in the header, we need to set a limit. If
the header of the frame allows m bits for the sequence number, the sequence numbers
range from 0 to 2m - 1. For example, if m is 4, the only sequence numbers are 0
through 15 inclusive. However, we can repeat the sequence. So the sequence num
bers are

0, 1,2,3,4,5,6, 7,8,9, 10, 11, 12, 13, 14, 15,0, 1,2,3,4,5,6,7,8,9,10, 11, ...

In other words, the sequence numbers are modulo-2m
.

In the Go-Back-N Protocol, the sequence numbers are modulo 1!",
where m is the size of the sequence number field in bits.

Sliding Window

In this protocol (and the next), the sliding window is an abstract concept that defines the
range of sequence numbers that is the concern of the sender and receiver. In other words,
the sender and receiver need to deal with only part of the possible sequence numbers. The
range which is the concern of the sender is called the send sliding window; the range that
is the concern of the receiver is called the receive sliding window. We discuss both here.

The send window is an imaginary box covering the sequence numbers of the data
frames which can be in transit. In each window position, some of these sequence numbers
define the frames that have been sent; others define those that can be sent. The maximum
size of the window is 2m - 1 for reasons that we discuss later. In this chapter, we let the size
be fixed and set to the maximum value, but we will see in future chapters that some protocols
may have a variable window size. Figure 11.12 shows a sliding window of size 15 (m =4).

The window at any time divides the possible sequence numbers into four regions.
The first region, from the far left to the left wall of the window, defines the sequence

SECTION 11.5 NOISY CHANNELS 325

Figure 11.12 Send window for Go-Back-N ARQ

Sf Send window,

~'~d;"g '"m,

:)Xf)!~r(5~~Z;! 3 14 1 5 ! 6

Frames already
acknowledged

Frames sent, but not
acknowledged (outstanding)

Frames that can be sent,
but not received from upper layer

Frames that
cannot be sent

Send window, size SSilC '" 2m
- 1

a. Send window before sliding

5"

---w:±J:m:w:L:l12 i 13 i 14 i IS i0CIl
b. Send window after sliding

numbers belonging to frames that are already acknowledged. The sender does not
worry about these frames and keeps no copies of them. The second region, colored in
Figure 11.12a, defines the range of sequence numbers belonging to the frames that are
sent and have an unknown status. The sender needs to wait to find out if these frames
have been received or were lost. We call these outstanding frames. The third range,
white in the figure, defines the range of sequence numbers for frames that can be sent;
however, the corresponding data packets have not yet been received from the network
layer. Finally, the fourth region defines sequence numbers that cannot be used until the
window slides, as we see next.

The window itself is an abstraction; three variables define its size and location at
any time. We call these variables Sf(send window, the first outstanding frame), Sn (send
window, the next frame to be sent), and Ssize (send window, size). The variable Sf defines
the sequence number of the first (oldest) outstanding frame. The variable Sn holds the
sequence number that will be assigned to the next frame to be sent. Finally, the variable
Ssize defines the size of the window, which is fixed in our protocol.

The send window is an abstract concept defining an imaginary
box of size 2m

~ 1 with three variables: Sp Sm and Ssize'

Figure 11.12b shows how a send window can slide one or more slots to the right
when an acknowledgment arrives from the other end. As we will see shortly, the acknowl
edgments in this protocol are cumulative, meaning that more than one frame can be
acknowledged by an ACK frame. In Figure 11.12b, frames 0, I, and 2 are acknowledged,
so the window has slid to the right three slots. Note that the value ofSf is 3 because frame 3
is now the first outstanding frame.

The send window can slide one or more slots when a valid acknowledgment arrives.

326 CHAPTER 11 DATA LINK CONTROL

The receive window makes sure that the correct data frames are received and that
the correct acknowledgments are sent. The size of the receive window is always I. The
receiver is always looking for the arrival of a specific frame. Any frame arriving out of
order is discarded and needs to be resent. Figure 11.13 shows the receive window.

Figure 11.13 Receive window for Go-Back-N ARQ

R II Receive window, next frame expected

"---,---r---,---,---,---~---,---,---,---,---,---,---,---,---,---,---,---,---,---,
, 13 I 14 I IS I 0 I 1 I 2 , 3 I 4 I 5 I 6 I 7 I 8 , 9 I 10 I II , 12 , 13 I 14 , 15 I 0 I 1 Il .I J l l 1 "' J. l 1 1 .1 1~ __ 1 1 1 .L J J J ~

Frames already received Frames that cannot be received
and acknowledged until the window slides

a. Receive window

R II

"- - -, - - - ,- - -, - - -, - -- ,-- - ,- - -~ - - -, -- -, - --, -- -, - - -, -- -" ---, ---, - - -" - - -, - - - ,- --, - --,
, 13 I 14 I 15 I 0 I 1 I 2 ' 3 ' 4 I 5 I 6 ' 7 I 8 ' 9 I 10 I I I I 12 I 13 , 14 I 15 I 0 I 1 ,
~ J J ~ J. 1 1 ~ .1. 1 .1 ... 1 1 1 1 1 J. .J .I ~

b. Window after sliding

The receive window is an abstract concept defining an imaginary
box of size 1 with one single variable Rn• The window slides

when a correct frame has arrived; sliding occurs one slot at a time.

Note that we need only one variable Rn (receive window, next frame expected) to
define this abstraction. The sequence numbers to the left of the window belong to the
frames already received and acknowledged; the sequence numbers to the right of this
window define the frames that cannot be received. Any received frame with a sequence
number in these two regions is discarded. Only a frame with a sequence number match
ing the value of Rn is accepted and acknowledged.

The receive window also slides, but only one slot at a time. When a correct frame
is received (and a frame is received only one at a time), the window slides.

Timers

Although there can be a timer for each frame that is sent, in our protocol we use only
one. The reason is that the timer for the first outstanding frame always expires first; we
send all outstanding frames when this timer expires.

Acknowledgment

The receiver sends a positive acknowledgment if a frame has arrived safe and sound
and in order. If a frame is damaged or is received out of order, the receiver is silent and
will discard all subsequent frames until it receives the one it is expecting. The silence of

SECTION 11.5 NOISY CHANNELS 327

the receiver causes the timer of the unacknowledged frame at the sender site to expire.
This, in turn, causes the sender to go back and resend all frames, beginning with the one
with the expired timer. The receiver does not have to acknowledge each frame received.
It can send one cumulative acknowledgment for several frames.

Resending a Frame

When the timer expires, the sender resends all outstanding frames. For example, suppose
the sender has already sent frame 6, but the timer for frame 3 expires. This means that
frame 3 has not been acknowledged; the sender goes back and sends frames 3, 4,5, and 6
again. That is why the protocol is called Go-Back-N ARQ.

Design

Figure 11.14 shows the design for this protocol. As we can see, multiple frames can
be in transit in the forward direction, and mUltiple acknowledgments in the reverse
direction. The idea is similar to Stop-and-Wait ARQ; the difference is that the send

Figure 11.14 Design ofGo-Back-N ARQ

S Next

!i~nd

I iI !
Sender Receiver

Network

Data link

Physical

Data frame ACKframe Deliver
Get data '1 ~ data

I seqNo ackNo ...,. I

... I ... I
R I, T I, t

ecelve Send ReceIve Send
frame frame frame frame

•I i &f&§ , M¥ ! '¥§ w, '#,M# I
I-+--~ ~ I:::l\'aI

Network

Data link

Physical

Event:

Repeat forever

Event:

Repeat forever

328 CHAPTER 11 DATA LINK CONTROL

window allows us to have as many frames in transition as there are slots in the send
window.

Send Window Size

We can now show why the size of the send window must be less than 2m . As an
example, we choose m = 2, which means the size of the window can be 2m

- 1, or 3.
Figure 11.15 compares a window size of 3 against a window size of 4. If the size of
the window is 3 (less than 22) and all three acknowledgments are lost, the frame °
timer expires and all three frames are resent. The receiver is now expecting frame 3,
not frame 0, so the duplicate frame is correctly discarded. On the other hand, if the
size of the window is 4 (equal to 22) and all acknowledgments are lost, the sender
will send a duplicate of frame 0. However, this time the window of the receiver
expects to receive frame 0, so it accepts frame 0, not as a duplicate, but as the first
frame in the next cycle. This is an error.

Figure 11.15 Window size for Go-Back-N ARQ

Sender Receiver Sender Receiver

a. Window size < 2m b. Window size = 2m

In Go-Back-N ARQ, the size of the send window must be less than r;
the size of the receiver window is always 1.

Algorithms

Algorithm 11.7 shows the procedure for the sender in this protocol.

SECTION 11.5 NOISY CHANNELS 329

Algorithm 11.7 Go-Back-N sender algorithm

if{Event{ArrivalNotification» IIACK arrives
{

~hile (true)
{

WaitForEvent();
if(Event(RequestToSend»
{

if{Event{TimeOut»
{

StartTimer() ;
Temp = Sf;
while{Temp < Sn);

{

SendFrame(Sf);

Sf = Sf + 1;
}

//A packet to send

//Repeat forever

IIIf window is full

liThe timer expires

IIIf a valid ACK

Receive (ACK) ;
if{corrupted{ACK»

Sleep ();
if{{ackNo>sf)&&{ackNO<=Sn»
While(Sf <= ackNo)

{

PurgeFrame{Sf);

Sf = Sf + 1;
}

StopTimer();

if (Sn-Sf >= Sw)
Sleep () ;

GetData() ;
MakeFrame (Sn) ;
StoreFrame (Sn) ;
SendFrame(Sn) ;

Sn = Sn + 1;
if(timer not running)

StartTimer{);

}

}

}

1 Sw = 2'" - 1;

2 Sf = 0;
3 Sn = OJ
4
5

6
7

8

9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37
38

39

40
41
42
43

44
45 }

Analysis This algorithm first initializes three variables. Unlike Stop-and-Wait ARQ, this pro
tocol allows several requests from the network layer without the need for other events to occur;
we just need to be sure that the window is not full (line 12). In our approach, if the window is full,

330 CHAPTER J1 DATA LINK CONTROL

the request is just ignored and the network layer needs to try again. Some implementations use other
methods such as enabling or disabling the network layer. The handling of the arrival event is more
complex than in the previous protocol. If we receive a corrupted ACK, we ignore it. If the adeNa
belongs to one of the outstanding frames, we use a loop to purge the buffers and move the left wall
to the right. The time-out event is also more complex. We first start a new timer. We then resend all
outstanding frames.

Algorithm 11.8 is the procedure at the receiver site.

Algorithm 11.8 Go-Back-N receiver algorithm

if(Event{ArrivalNotification» /Data frame arrives
(

WaitForEvent();

IIIf expected frame

IIRepeat forever

IIDeliver data
IISlide window

DeliverData()i
Ru =~ + 1;
SendACK (Ru) ;

}

Receive(Frame);
if(corrupted(Frame»

Sleep(};
if(seqNo == Ru}
{

}

1 ~n = 0;
2

3 ~hile (true)
4 {
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19 }

Analysis This algorithm is simple. We ignore a corrupt or out-of-order frame. If a frame
arrives with an expected sequence number, we deliver the data, update the value of Rn, and send
an ACK with the ackNa showing the next frame expected.

Example 11.6

Figure 11.16 shows an example of Go-Back-N. This is an example of a case where the forward
channel is reliable, but the reverse is not. No data frames are lost, but some ACKs are delayed and
one is lost. The example also shows how cumulative acknowledgments can help if acknowledgments
are delayed or lost.

After initialization, there are seven sender events. Request events are triggered by data
from the network layer; arrival events are triggered by acknowledgments from the physical
layer. There is no time-out event here because all outstanding frames are acknowledged
before the timer expires. Note that although ACK 2 is lost, ACK 3 serves as both ACK 2 and
ACK3.

There are four receiver events, all triggered by the arrival of frames from the physical
layer.

SECTION 11.5 NOISY CHANNELS 331

Figure 11.16 Flow diagram for Example 11.6

Arrival

Request

Reque~t

R
I1

Arrival
L....L---'-.L...j,..,J---'------l.......J

Receiver

L!l RI1

~ I 1213141516171 Initial

i--------.::::?,.j-~~.!J2~l±i~l2J Arrival

:-----==::;~+-..-@1Itill:ffiill~Arrival

Time

Sender

LP

Arrival

Arrival

Sf~
Initial ~-7r:lo"l1--'1-'21

Sf
Reque~t P.O~I""2.3"4'1"'5"'1""'61-7'0-'-1'2'

Request

Start
timer

l-

Stop
timer

Example 11.7

Figure 11.17 shows what happens when a frame is lost. Frames 0, 1, 2, and 3 are sent. However,
frame 1 is lost. The receiver receives frames 2 and 3, but they are discarded because they are
received out of order (frame 1 is expected). The sender receives no acknowledgment about
frames 1, 2, or 3. Its timer finally expires. The sender sends all outstanding frames (1, 2, and 3)
because it does not know what is wrong. Note that the resending of frames l, 2, and 3 is the
response to one single event. When the sender is responding to this event, it cannot accept the
triggering of other events. This means that when ACK 2 arrives, the sender is still busy with send
ing frame 3. The physica1layer must wait until this event is completed and the data link layer
goes back to its sleeping state. We have shown a vertical line to indicate the delay. It is the same
story with ACK 3; but when ACK 3 arrives, the sender is busy responding to ACK 2. It happens
again when ACK 4 arrives. Note that before the second timer expires, all outstanding frames have
been sent and the timer is stopped.

Go-Back-N ARQ Versus Stop-and- Wait ARQ

The reader may find that there is a similarity between Go-Back-N ARQ and Stop-and-Wait
ARQ. We can say that the Stop-and-WaitARQ Protocol is actually a Go-Back-N ARQ
in which there are only two sequence numbers and the send window size is 1. In other
words, m = 1, 2m - 1 = 1. In Go-Back-N ARQ, we said that the addition is modulo-2m; in
Stop-and-Wait ARQ it is 2, which is the same as 2m when m = 1.

332 CHAPTER 11 DATA LINK CONTROL

Figure 11.17 Flow diagram for Example 11.7

Sender

L!JStart
timer Sf~

Initial~

Sf Sn

Request 0 I 2 3 4 5 6 7 0 1

Receiver

crJ Rn

: ~Initial
I
I

r:q;::::::::-A---_: Rn
1 Frame 0
I

Stop-and-WaitARQ is a special case of Go-Back-NARQ
in which the size of the send window is 1.

Selective Repeat Automatic Repeat Request

Go-Back-N ARQ simplifies the process at the receiver site. The receiver keeps track of
only one variable, and there is no need to buffer out-of-order frames; they are simply
discarded. However, this protocol is very inefficient for a noisy link. In a noisy link a
frame has a higher probability of damage, which means the resending of multiple frames.
This resending uses up the bandwidth and slows down the transmission. For noisy links,
there is another mechanism that does not resend N frames when just one frame is dam
aged; only the damaged frame is resent. This mechanism is called Selective RepeatARQ.
It is more efficient for noisy links, but the processing at the receiver is more complex.

SECTION 11.5 NOISY CHANNELS 333

Windows

The Selective Repeat Protocol also uses two windows: a send window and a receive win
dow. However, there are differences between the windows in this protocol and the ones in
Go-Back-N. First, the size of the send window is much smaller; it is 2m- I . The reason for
this will be discussed later. Second, the receive window is the same size as the send window.

The send window maximum size can be 2m- I . For example, if m = 4, the
sequence numbers go from 0 to 15, but the size of the window is just 8 (it is 15 in
the Go-Back-N Protocol). The smaller window size means less efficiency in filling the
pipe, but the fact that there are fewer duplicate frames can compensate for this.
The protocol uses the same variables as we discussed for Go-Back-N. We show the
Selective Repeat send window in Figure 11.18 to emphasize the size. Compare it with
Figure 11.12.

Figure 11.18 Send window for Selective Repeat ARQ

L ___ J ___ J ___
~

___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ ~ ___ J ___ j ___ J ___

Frames already Frames sent, but Frames that can Frames that
acknowledged not acknowledged be sent cannot be sent

'\iLC '= 2m
-

1

The receive window in Selective Repeat is totally different from the one in Go
Back-N. First, the size of the receive window is the same as the size of the send window
(2m- I). The Selective Repeat Protocol allows as many frames as the size of the receive
window to arrive out of order and be kept until there is a set of in-order frames to be
delivered to the network layer. Because the sizes of the send window and receive win
dow are the same, all the frames in the send frame can arrive out of order and be stored
until they can be delivered. We need, however, to mention that the receiver never delivers
packets out of order to the network layer. Figure 11.19 shows the receive window in this

Figure 11.19 Receive window for Selective Repeat ARQ

R Receive window•.t:.next frame expected

:))~rl~~f)]5~rfI~!~f~~~tn 4 ! 5 ru--71111!11811' 9

Frames that can be received
Frames already and stored for later delivery.

received Colored boxes, already received
Frames that

cannot be received

334 CHAPTER II DATA LINK CONTROL

protocol. Those slots inside the window that are colored define frames that have arrived
out of order and are waiting for their neighbors to arrive before delivery to the network
layer.

Design

The design in this case is to some extent similar to the one we described for the 00
Back-N, but more complicated, as shown in Figure 11.20.

Figure 11.20 Design of Selective Repeat ARQ

S First S Next

6oo:io:i6'o"0"

Sender

R Next
n '

~
Receiver

Network

Data link

Physical

Data frame ACKor NAK Deliver
Get data ') ~ data

I seqNo ackNo .+
r or I

nakNo

.+ 1 .+ I
R I, T R I, T

ecelve Send ecelve Send
frame frame frame frame

)0

I I P&¥ I Jd , if%*&WE** I F5f?i¥*%W I
I~~ e::- ~

Network

Data link

Physical

Event:I Request from I
network layer

I

I
E INotification from j

vent: physical layer

Repeat forever

Window Sizes

We can now show why the size of the sender and receiver windows must be at most one
half of 2m. For an example, we choose m = 2, which means the size of the window is 2m/2,
or 2. Figure 11.21 compares a window size of 2 with a window size of 3.

If the size of the window is 2 and all acknowledgments are lost, the timer for frame 0
expires and frame 0 is resent. However, the window of the receiver is now expecting

SECTION 11.5 NOISY CHANNELS 335

Figure 11.21 Selective Repeat ARQ, window size

Sender

Sf_It
o 1 2 3

Time-out

a. Window size =2m
-

1

Receiver Sender

Sf~

~

Sf~l

~
Sf~l

~Time-out

b. Window size> 2m- 1

Receiver

frame 2, not frame 0, so this duplicate frame is correctly discarded. When the size of
the window is 3 and all acknowledgments are lost, the sender sends a duplicate of
frame O. However, this time, the window of the receiver expects to receive frame 0 (0 is
part of the window), so it accepts frame 0, not as a duplicate, but as the first frame in
the next cycle. This is clearly an error.

In Selective Repeat ARQ, the size of the sender and receiver window
must be at most one-half of 2m•

Algorithms

Algorithm 11.9 shows the procedure for the sender.

Algorithm 11.9 Sender-site Selective Repeat algorithm

WaitForEvent()i
if(Event(RequestToSend)}
{

1 = 2m- 1 i

2 = Oi
3 = Oi
4
5 hile (true)
6 {
7

8

9

//Repeat forever

//There is a packet to sen

336 CHAPTER 11 DATA LINK CONTROL

Algorithm 11.9 Sender-site Selective Repeat algorithm (continued)

}

while{sf < ackNo)
{

Purge (sf);
stopTimer (Sf) ;

Sf = Sf + 1;
}

if(Event{ArrivalNotification» IIACK arrives
{

Receive{frame); I/Receive ACK or NAK
if{corrupted{frame»

Sleep ();
if (FrameType == NAK)

if (nakNo between Sf and So)
{

resend{nakNo);
StartTimer{nakNo);

}

if (FrameType == ACK)
if (ackNo between Sf and So)
{

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34

35

36
37

38
39

40
41
42
43

44
45

46
47
48 }

if{Sn-S;E >= Sw)
Sleep {);

GetData{) ;
MakeFrame (Sn) ;
StoreFrame{Sn);
SendFrame (Sn) ;
Sn = Sn + 1;
StartTimer{Sn);

}

}

if(Event{TimeOut{t»)
{

StartTimer{t);
SendFrame{t);

}

I/If window is full

liThe timer expires

Analysis The handling of the request event is similar to that of the previous protocol except
that one timer is started for each frame sent. The arrival event is more complicated here. An ACK
or a NAK frame may arrive. If a valid NAK frame arrives, we just resend the corresponding
frame. If a valid ACK arrives, we use a loop to purge the buffers, stop the corresponding timer.
and move the left wall of the window. The time-out event is simpler here; only the frame which
times out is resent.

Algorithm 11.10 shows the procedure for the receiver.

SECTION 11.5 NOISY CHANNELS 337

AI~orithm 11.10 Receiver-site Selective Repeat algorithm

jData frame arrives

IIRepeat forever

}

if (AckNeeded) ;
{

SendAck(Rn) ;
AckNeeded = false;
NakSent = false;
}

}

}

Receive(Frame);
if(corrupted(Frame»&& (NOT NakSent)
{

SendNAK(Rn) ;
NakSent = true;
Sleep{);

}

if(seqNo <> Rn)&& (NOT NakSent)
{

SendNAK(Rn) ;
NakSent = true;
if {(seqNo in window)&&(IMarked(seqNo»
{

StoreFrame{seqNo)
Marked(seqNo)= true;
whi1e(Marked(Rn»
{

DeliverData (Rn) ;

Purge (Rn);

Rn = Rn + 1;
AckNeeded = true;

}

WaitForEvent()i

if{Event{ArrivalNotification»
{

1 ~n = 0;
2 ~akSent = false;
3 ~ckNeeded = false;
4 ~epeat(for all slots)
5 Marked (slot) = false;
6

7 !while (true)
8 {
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44 }

'----- --l":~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~___l

Analysis Here we need more initialization. In order not to overwhelm the other side with
NAKs, we use a variable called NakSent. To know when we need to send an ACK, we use a vari
able called AckNeeded. Both of these are initialized to false. We also use a set of variables to

338 CHAPTER 11 DATA LINK CONTROL

mark the slots in the receive window once the corresponding frame has arrived and is stored. If
we receive a corrupted frame and a NAK has not yet been sent, we send a NAK to tell the other
site that we have not received the frame we expected. If the frame is not corrupted and the
sequence number is in the window, we store the frame and mark the slot. If contiguous frames,
starting from Rn have been marked, we deliver their data to the network layer and slide the win
dow. Figure 11.22 shows this situation.

Figure 11.22 Delivery ofdata in Selective Repeat ARQ

R ackNo sent: 3

~
a. Before delivery b. After delivery

Example 11.8

This example is similar to Example 11.3 in which frame 1 is lost. We show how Selective Repeat
behaves in this case. Figure 11.23 shows the situation.

Figure 11.23 Flow diagramfor Example 11.8

Arrival

Arrival

Arrival
"----D......~--'--JL.......J

Receiver

L!J Rn

i ~Initial
I
I
I

Arrival
"----D~~--'--JL.......J

. Rn
I\C~4 m
~ 0 111213 4 5 6 7 Arrival

: Frames 1,2,3
t delivered

J
I

t

Sender

C!l

Request

Request

Request

Arrival

Sf~
Initial~

Sf Sn

Request 0 1 2 3 4 5 6 7 0

o

1

SECTION 11.5 NOISY CHANNELS 339

One main difference is the number of timers. Here, each frame sent or resent needs a timer,
which means that the timers need to be numbered (0, 1,2, and 3). The timer for frame °starts
at the first request, but stops when the ACK for this frame arrives. The timer for frame I starts at
the second request, restarts when a NAK arrives, and finally stops when the last ACK arrives.
The other two timers start when the corresponding frames are sent and stop at the last arrival
event.

At the receiver site we need to distinguish between the acceptance of a frame and its
delivery to the network layer. At the second arrival, frame 2 arrives and is stored and marked
(colored slot), but it cannot be delivered because frame I is missing. At the next arrival, frame 3
arrives and is marked and stored, but still none of the frames can be delivered. Only at the last
arrival, when finally a copy of frame 1 arrives, can frames I, 2, and 3 be delivered to the net
work layer. There are two conditions for the delivery of frames to the network layer: First, a set
of consecutive frames must have arrived. Second, the set starts from the beginning of the win
dow. After the first alTival, there was only one frame and it started from the beginning of the
window. After the last arrival, there are three frames and the first one starts from the beginning
of the window.

Another important point is that a NAK is sent after the second arrival, but not after the third,
although both situations look the same. The reason is that the protocol does not want to crowd the
network with unnecessary NAKs and unnecessary resent frames. The second NAK would still be
NAKI to inform the sender to resend frame 1 again; this has already been done. The first NAK
sent is remembered (using the nakSent variable) and is not sent again until the frame slides. A
NAK is sent once for each window position and defines the first slot in the window.

The next point is about the ACKs. Notice that only two ACKs are sent here. The first one
acknowledges only the first frame; the second one acknowledges three frames. In Selective
Repeat, ACKs are sent when data are delivered to the network layer. If the data belonging to n
frames are delivered in one shot, only one ACK is sent for all of them.

Piggybacking
The three protocols we discussed in this section are all unidirectional: data frames flow
in only one direction although control information such as ACK and NAK frames can
travel in the other direction. In real life, data frames are normally flowing in both direc
tions: from node A to node B and from node B to node A. This means that the control
information also needs to flow in both directions. A technique called piggybacking is
used to improve the efficiency of the bidirectional protocols. When a frame is carrying
data from A to B, it can also carry control information about arrived (or lost) frames
from B; when a frame is carrying data from B to A, it can also carry control information
about the arrived (or lost) frames from A.

We show the design for a Go-Back-N ARQ using piggybacking in Figure 11.24.
Note that each node now has two windows: one send window and one receive window.
Both also need to use a timer. Both are involved in three types of events: request, arrival,
and time-out. However, the arrival event here is complicated; when a frame arrives, the
site needs to handle control information as well as the frame itself. Both of these concerns
must be taken care of in one event, the arrival event. The request event uses only the send
window at each site; the arrival event needs to use both windows.

An important point about piggybacking is that both sites must use the same algo
rithm. This algorithm is complicated because it needs to combine two arrival events
into one. We leave this task as an exercise.

340 CHAPTER 11 DATA LINK CONTROL

Figure 11.24 Design ofpiggybacking in Go-Back-N ARQ

Send
window

Receive
window

Receive Send
window window

C 11m'~1_1 1IJIIJIl

Network

Data link

Physical

ackNo

Deliver Get I
-Frame

Deliver Get.. I
I 'f ~ I

I T seqNo I T

.. I ~ I
R I, T R I, T

ecelve Send ecelve Send
frame frame frame frame

I , bed .l Irs) _I I@@
-~ I

~, f¥fI _I 1""'3 -, FB¥i -

Network

Data link

Physical

Event:I Request from I
' network layer

I
Repeat forever t 0

Algorithm for
f-'oO ----i Time-out Isending and receiving

Event:..
I

E .1 Notification from I
vent: physical layer

Algorithm for
sending and receiving

11.6 HDLC
High-level Data Link Control (HDLC) is a bit-oriented protocol for communication
over point-to-point and multipoint links. It implements the ARQ mechanisms we dis
cussed in this chapter.

Configurations and Transfer Modes

HDLC provides two common transfer modes that can be used in different configura
tions: normal response mode (NRM) and asynchronous balanced mode (ABM).

Normal Response Mode

In normal response mode (NRM), the station configuration is unbalanced. We have one
primary station and multiple secondary stations. A primary station can send commands;
a secondary station can only respond. The NRM is used for both point-to-point and
multiple-point links, as shown in Figure 11.25.

SECTION 11.6 HDLC 341

Figure 11.25 Normal response mode

Primary

I Command t------

a. Point-to-point

Secondary

~ Response I

Secondary Secondary

Primary

I Command t------

b. Multipoint

~ Response I ~ Response I

Asynchronous Balanced Mode

In asynchronous balanced mode (ABM), the configuration is balanced. The link is
point-to-point, and each station can function as a primary and a secondary (acting as
peers), as shown in Figure 11.26. This is the common mode today.

Figure 11.26 Asynchronous balanced mode

Combined Combined

ICommand/response t------
~ Command/response I

Frames

To provide the flexibility necessary to support all the options possible in the modes and
configurations just described, HDLC defines three types of frames: information frames
(I-frames), supervisory frames (S-frames), and unnumbered frames (V-frames). Each
type of frame serves as an envelope for the transmission of a different type of message.
I-frames are used to transport user data and control information relating to user data
(piggybacking). S-frames are used only to transport control information. V-frames are
reserved for system management. Information carried by V-frames is intended for manag
ing the link itself.

342 CHAPTER 11 DATA LINK CONTROL

Frame Format

Each frame in HDLC may contain up to six fields, as shown in Figure 11.27: a begin
ning flag field, an address field, a control field, an information field, a frame check
sequence (FCS) field, and an ending flag field. In multiple-frame transmissions, the
ending flag of one frame can serve as the beginning flag of the next frame.

Figure 11.27 HDLC frames

Flag Address Control FCS Flag S-frame

Flag Address Control

Flag Address Control

User
infonnation

Management
infonnatlon

PCS Flag I-frame

FCS Flag U-frame

Fields

Let us now discuss the fields and their use in different frame types.

o Flag field. The flag field of an HDLC frame is an 8-bit sequence with the bit pattern
01111110 that identifies both the beginning and the end of a frame and serves as a
synchronization pattern for the receiver.

o Address field. The second field of an HDLC frame contains the address of the
secondary station. If a primary station created the frame, it contains a to address. If
a secondary creates the frame, it contains afrom address. An address field can be
1 byte or several bytes long, depending on the needs of the network. One byte can
identify up to 128 stations (l bit is used for another purpose). Larger networks
require multiple-byte address fields. If the address field is only 1 byte, the last bit
is always a 1. If the address is more than 1 byte, all bytes but the last one will end
with 0; only the last will end with 1. Ending each intermediate byte with 0 indi
cates to the receiver that there are more address bytes to come.

o Control field. The control field is a 1- or 2-byte segment of the frame used for
flow and error control. The interpretation of bits in this field depends on the frame
type. We discuss this field later and describe its format for each frame type.

o Information field. The information field contains the user's data from the net
work layer or management information. Its length can vary from one network to
another.

o FCS field. The frame check sequence (FCS) is the HDLC error detection field. It
can contain either a 2- or 4-byte ITU-T CRC.

SECTION 11.6 HDLC 343

Control Field

The control field determines the type of frame and defines its functionality. So let us
discuss the format of this field in greater detail. The format is specific for the type of
frame, as shown in Figure 11.28.

Figure 11.28 Control field format for the different frame types

~I-frame

N(S) N(R)

~s-frarne
Code N(R)

~U-frame
Code Code

Control Field for I-Frames

I-frames are designed to carry user data from the network layer. In addition, they can
include flow and error control information (piggybacking). The subfields in the control
field are used to define these functions. The first bit defines the type. If the first bit of
the control field is 0, this means the frame is an I-frame. The next 3 bits, called N(S),
define the sequence number of the frame. Note that with 3 bits, we can define a
sequence number between °and 7; but in the extension format, in which the control
field is 2 bytes, this field is larger. The last 3 bits, called N(R), correspond to the
acknowledgment number when piggybacking is used. The single bit between N(S) and
N(R) is called the PIF bit. The PIP field is a single bit with a dual purpose. It has mean
ing only when it is set (bit = 1) and can mean poll or final. It means poll when the frame
is sent by a primary station to a secondary (when the address field contains the address
of the receiver). It means final when the frame is sent by a secondary to a primary
(when the address field contains the address of the sender).

Control Fieldfor S-Frames

Supervisory frames are used for flow and error control whenever piggybacking is either
impossible or inappropriate (e.g., when the station either has no data of its own to send or
needs to send a command or response other than an acknowledgment). S-frames do not
have information fields. If the first 2 bits of the control field is 10, this means the frame
is an S-frame. The last 3 bits, called N(R), corresponds to the acknowledgment number
(ACK) or negative acknowledgment number (NAK) depending on the type of S-frame.
The 2 bits called code is used to define the type of S-frame itself. With 2 bits, we can
have four types of S-frames, as described below:

o Receive ready (RR). If the value of the code subfield is 00, it is an RR S-frame.
This kind of frame acknowledges the receipt of a safe and sound frame or
group of frames. In this case, the value N(R) field defines the acknowledgment
number.

344 CHAPTER 11 DATA LINK CONTROL

o Receive not ready (RNR). If the value of the code subfield is 10, it is an RNR
S-frame. This kind of frame is an RR frame with additional functions. It
acknowledges the receipt of a frame or group of frames, and it announces that
the receiver is busy and cannot receive more frames. It acts as a kind of conges
tion control mechanism by asking the sender to slow down. The value of NCR)
is the acknowledgment number.

o Reject (REJ). If the value of the code subfield is 01, it is a REJ S-frame. This is a
NAK frame, but not like the one used for Selective Repeat ARQ. It is a NAK that
can be used in Go-Back-N ARQ to improve the efficiency of the process by
informing the sender, before the sender time expires, that the last frame is lost or
damaged. The value of NCR) is the negative acknowledgment number.

o Selective reject (SREJ). If the value of the code subfield is 11, it is an SREJ S-frame.
This is a NAK frame used in Selective Repeat ARQ. Note that the HDLC Protocol
uses the term selective reject instead of selective repeat. The value of N(R) is the neg
ative acknowledgment number.

Control Fieldfor V-Frames

Unnumbered frames are used to exchange session management and control infonnation
between connected devices. Unlike S-frames, U-frames contain an information field,
but one used for system management information, not user data. As with S-frames,
however, much of the infonnation carried by U-frames is contained in codes included
in the control field. U-frame codes are divided into two sections: a 2-bit prefix before
the PtF bit and a 3-bit suffix after the PtF bit. Together, these two segments (5 bits) can
be used to create up to 32 different types of U-frames. Some of the more common types
are shown in Table 11.1.

Table 11.1 U~frame control command and response

Code Command Response Meaning

00 001 SNRM Set normal response mode

11 011 SNRME Set normal response mode, extended

11 100 SABM DM Set asynchronous balanced mode or disconnect mode

11110 SABME Set asynchronous balanced mode, extended

00 000 UI UI Unnumbered information

00 110 UA Unnumbered acknowledgment

00 010 DISC RD Disconnect or request disconnect

10 000 SIM RIM Set initialization mode or request information mode

00 100 UP Unnumbered poll

11 001 RSET Reset

11 101 XID XID Exchange ID

10 001 FRMR FRMR Frame reject

SECTION 11.6 HDLC 345

Example 11.9: Connection/Disconnection

Figure 11.29 shows how V-frames can be used for connection establishment and connection
release. Node A asks for a connection with a set asynchronous balanced mode (SABM) frame;
node B gives a positive response with an unnumbered acknowledgment (VA) frame. After these
two exchanges, data can be transferred between the two nodes (not shown in the figure). After
data transfer, node A sends a DISC (disconnect) frame to release the connection; it is confirmed
by node B responding with a VA (unnumbered acknowledgment).

Figure 11.29 Example of connection and disconnection

Node A NodeB

Data transfer

c:
o
.- 1)
- cf)u os
1) 1)
<=I-S ~
u

y
Time

I
I

t
Time

Example 11.10: Piggybacking without Error

Figure 11.30 shows an exchange using piggybacking. Node A begins the exchange of
information with an I-frame numbered 0 followed by another I-frame numbered 1. Node B
piggybacks its acknowledgment of both frames onto an I-frame of its own. Node B's first
I-frame is also numbered 0 [N(S) field] and contains a 2 in its N(R) field, acknowledging the
receipt of Ns frames 1 and 0 and indicating that it expects frame 2 to arrive next. Node B
transmits its second and third I-frames (numbered 1 and 2) before accepting further
frames from node A. Its N(R) information, therefore, has not changed: B frames 1 and 2
indicate that node B is still expecting Ns frame 2 to arrive next. Node A has sent all its
data. Therefore, it cannot piggyback an acknowledgment onto an I-frame and sends an S-frame
instead. The RR code indicates that A is still ready to receive. The number 3 in the N(R) field
tells B that frames 0, 1, and 2 have all been accepted and that A is now expecting frame
number 3.

346 CHAPTER 11 DATA LINK CONTROL

Figure 11.30 Example ofpiggybacking without error

Node A NodeB

o

S-frame (RR), an ACK 3

l' Control F \'r-------., B C .-.------.,
a \ORR 3S a
g g

y
Time

y
Time

Example 11.11: Piggybacking with Error

Figure 11.31 shows an exchange in which a frame is lost. Node B sends three data frames (0, 1,
and 2), but frame 1 is lost. When node A receives frame 2, it discards it and sends a REI frame for
frame 1. Note that the protocol being used is Go-Back-N with the special use of an REI frame as
a NAK frame. The NAK frame does two things here: It confirms the receipt of frame °and
declares that frame 1 and any following frames must be resent. Node B, after receiving the REI
frame, resends frames 1 and 2. Node A acknowledges the receipt by sending an RR frame (ACK)
with acknowledgment number 3.

11.7 POINT-TO-POINT PROTOCOL
Although HDLC is a general protocol that can be used for both point-to-point and multi
point configurations, one of the most common protocols for point-to-point access is the
Point-to-Point Protocol (PPP). Today, millions of Internet users who need to connect
their home computers to the server of an Internet service provider use PPP. The majority
of these users have a traditional modem; they are connected to the Internet through a
telephone line, which provides the services of the physical layer. But to control and

SECTION 11.7 POINT-TO-POINT PROTOCOL 347

Figure 11.31 Example ofpiggybacking with error

Node A NodeB

..
Lost

Discarded L------<l_-.j

S-frame (REJ 1), a NAK

~
I contrOl F l'

'----- B C ~••l>------'

= IOREJ lSg

I-frame (data frame 1)

l' Control
r--......~ AI-----1r----.__--(

g 0 1 0

FI Resent
1------;a

g

Resent 1

1
I
I

'f
Time

S-frame (RR 3), an ACK

F Control F F
1-------1 I B C I~...-----;g toRR 3S g
'f

Time

manage the transfer of data, there is a need for a point-to-point protocol at the data link
layer. PPP is by far the most common.

PPP provides several services:

1. PPP defines the format of the frame to be exchanged between devices.

2. PPP defines how two devices can negotiate the establishment of the link and the
exchange of data.

3. PPP defines how network layer data are encapsulated in the data link frame.

4. PPP defines how two devices can authenticate each other.

5. PPP provides multiple network layer services supporting a variety of network layer
protocols.

6. PPP provides connections over multiple links.

7. PPP provides network address configuration. This is particularly useful when a home
user needs a temporary network address to connect to the Internet.

348 CHAPTER 11 DATA LINK CONTROL

On the other hand, to keep PPP simple, several services are missing:

I. PPP does not provide flow control. A sender can send several frames one after
another with no concern about overwhelming the receiver.

2. PPP has a very simple mechanism for error control. A CRC field is used to detect
errors. If the frame is corrupted, it is silently discarded; the upper-layer protocol
needs to take care of the problem. Lack of error control and sequence numbering
may cause a packet to be received out of order.

3. PPP does not provide a sophisticated addressing mechanism to handle frames in a
multipoint configuration.

Framing

PPP is a byte-oriented protocol. Framing is done according to the discussion of byte
oriented protocols at the beginning of this chapter.

Frame Format

Figure 11.32 shows the format of a PPP frame. The description of each field follows:

Figure 11.32 PPP framefomwt

1 byte 1 byte 1 byte 1 or 2 bytes

Payload

Variable 2 or 4 bytes 1 byte

o Flag. A PPP frame starts and ends with a I-byte flag with the bit pattern 01111110.
Although this pattern is the same as that used in HDLC, there is a big difference.
PPP is a byte-oriented protocol; HDLC is a bit-oriented protocol. The flag is treated
as a byte, as we will explain later.

o Address. The address field in this protocol is a constant value and set to 11111111
(broadcast address). During negotiation (discussed later), the two parties may agree
to omit this byte.

o Control. This field is set to the constant value 11000000 (imitating unnumbered
frames in HDLC). As we will discuss later, PPP does not provide any flow control.
Error control is also limited to error detection. This means that this field is not needed
at all, and again, the two parties can agree, during negotiation, to omit this byte.

o Protocol. The protocol field defines what is being carried in the data field: either
user data or other information. We discuss this field in detail shortly. This field is
by default 2 bytes long, but the two parties can agree to use only I byte.

o Payload field. This field carries either the user data or other information that we will
discuss shortly. The data field is a sequence of bytes with the default of a maximum
of 1500 bytes; but this can be changed during negotiation. The data field is byte
stuffed if the flag byte pattern appears in this field. Because there is no field defining
the size of the data field, padding is needed if the size is less than the maximum
default value or the maximum negotiated value.

o FCS. The frame check sequence (FCS) is simply a 2-byte or 4-byte standard CRe.

SECTION 11.7 POINT-TO-POINT PROTOCOL 349

Byte Stuffing

The similarity between PPP and HDLe ends at the frame format. PPP, as we discussed
before, is a byte-oriented protocol totally different from HDLC. As a byte-oriented
protocol, the flag in PPP is a byte and needs to be escaped whenever it appears in the
data section of the frame. The escape byte is 01111101, which means that every time
the flaglike pattern appears in the data, this extra byte is stuffed to tell the receiver that
the next byte is not a flag.

PPP is a byte-oriented protocol using byte stuffing with the escape byte 01111101.

Transition Phases

A PPP connection goes through phases which can be shown in a transition phase
diagram (see Figure 11.33).

Figure 11.33 Transition phases

Failed

Carrier
dropped

Tenmnate

Done

Carrier
detected

Failed

Options agreed
by both sides

Authenticate

Authentication
successful

If authentication
not needed

Network layer
configuration

Network

D Dead. In the dead phase the link is not being used. There is no active carrier (at
the physical layer) and the line is quiet.

D Establish. When one of the nodes starts the communication, the connection goes into
this phase. In this phase, options are negotiated between the two parties. If the negoti
ation is successful, the system goes to the authentication phase (if authentication is
required) or directly to the networking phase. The link control protocol packets, dis
cussed shortly, are used for this purpose. Several packets may be exchanged here.

D Authenticate. The authentication phase is optional; the two nodes may decide,
during the establishment phase, not to skip this phase. However, if they decide to
proceed with authentication, they send several authentication packets, discussed
later. If the result is successful, the connection goes to the networking phase; other
wise, it goes to the termination phase.

D Network. In the network phase, negotiation for the network layer protocols takes
place. PPP specifies that two nodes establish a network layer agreement before data at

350 CHAPTER 11 DATA LINK CONTROL

the network layer can be exchanged. The reason is that PPP supports multiple proto
cols at the network layer. If a node is running multiple protocols simultaneously at the
network layer, the receiving node needs to know which protocol will receive the data.

o Open. In the open phase, data transfer takes place. When a connection reaches
this phase, the exchange of data packets can be started. The connection remains in
this phase until one of the endpoints wants to terminate the connection.

o Terminate. In the termination phase the connection is terminated. Several packets
are exchanged between the two ends for house cleaning and closing the link.

Multiplexing
Although PPP is a data link layer protocol, PPP uses another set of other protocols to
establish the link, authenticate the parties involved, and carry the network layer data. Three
sets of protocols are defined to make PPP powetful: the Link Control Protocol (LCP), two
Authentication Protocols (APs), and several Network Control Protocols (NCPs). At any
moment, a PPP packet can carry data from one of these protocols in its data field, as shown
in Figure 11.34. Note that there is one LCP, two APs, and several NCPs. Data may also
come from several different network layers.

Figure 11.34 Multiplexing in PPP

Network
layer

Data link
layer

Data from different
networking protocols

NCP

•••

LCP: OxC021
AP: OxC023 and OxC223
NCP: Ox8021 and .
Data: Ox0021 and .

LCP: Link Control Protocol
AP: Authentication Protocol
NCP: Network Control Protocol

Link Control Protocol

The Link Control Protocol (LCP) is responsible for establishing, maintaining, config
uring, and terminating links. It also provides negotiation mechanisms to set options
between the two endpoints. Both endpoints of the link must reach an agreement about
the options before the link can be established. See Figure 11.35.

All LCP packets are carried in the payload field of the PPP frame with the protocol
field set to C021 in hexadecimal.

The code field defines the type of LCP packet. There are 11 types of packets as
shown in Table 11.2.

SECTION 11.7 POINT-TO-POINT PROTOCOL 351

Figure 11.35 LCP packet encapsulated in aframe

Variable

Infonnation

Payload
(and padding)

Table 11.2 LCP packets

Code Packet Type Description

OxOl Coofigure-request Contains the list of proposed options and their values

Ox02 Configure-ack Accepts all options proposed

Ox03 Configure-nak Announces that some options are oot acceptable

Ox04 Configure-reject Announces that some options are not recognized

Ox05 Terminate-request Request to shut down the line

Ox06 Terminate-ack Accept the shutdown request

Ox07 Code-reject Announces an unknown code

Ox08 Protocol-reject Announces an unknown protocol

Ox09 Echo-request A type of hello message to check if the other end is alive

OxOA Echo-reply The response to the echo-request message

OxOB Discard-request A request to discard the packet

There are three categories of packets. The first category, comprising the first four
packet types, is used for link configuration during the establish phase. The second cate
gory, comprising packet types 5 and 6, is used for link tennination during the termina
tion phase. The last five packets are used for link monitoring and debugging.

The ID field holds a value that matches a request with a reply. One endpoint inserts
a value in this field, which will be copied into the reply packet. The length field defines
the length of the entire LCP packet. The information field contains information, such as
options, needed for some LCP packets.

There are many options that can be negotiated between the two endpoints. Options
are inserted in the information field of the configuration packets. In this case, the infor
mation field is divided into three fields: option type, option length, and option data. We
list some of the most common options in Table 11.3.

Table 11.3 Common options

Option Default

Maximum receive unit (payload field size) 1500

Authentication protocol None

Protocol field compression Off

Address and control field compression Off

352 CHAPTER 11 DATA LINK CONTROL

Authentication Protocols

Authentication plays a very important role in PPP because PPP is designed for use over
dial-up links where verification of user identity is necessary. Authentication means vali
dating the identity of a user who needs to access a set of resources. PPP has created two
protocols for authentication: Password Authentication Protocol and Challenge Handshake
Authentication Protocol. Note that these protocols are used during the authentication phase.

PAP The Password Authentication Protocol (PAP) is a simple authentication pro
cedure with a two-step process:

1. The user who wants to access a system sends an authentication identification
(usually the user name) and a password.

2. The system checks the validity of the identification and password and either accepts
or denies connection.

Figure 11.36 shows the three types of packets used by PAP and how they are actually
exchanged. When a PPP frame is carrying any PAP packets, the value of the protocol
field is OxC023. The three PAP packets are authenticate-request, authenticate-ack, and
authenticate-nak. The first packet is used by the user to send the user name and pass
word. The second is used by the system to allow access. The third is used by the system
to deny access.

Figure 11.36 PAP packets encapsulated in a PPP frame

System

User
r

Authenticate-request

Authenticate-ack or authenticate-nak

PAP packets
I

cc __ - -----Flag Address I Control I ~O2316 Payload
FeS

I
Flag II - - (and padding)

CHAP The Challenge Handshake Authentication Protocol (CHAP) is a three-way
hand-shaking authentication protocol that provides greater security than PAP. In this
method, the password is kept secret; it is never sent online.

SECTION 11.7 POINT-TO-POINT PROTOCOL 353

1. The system sends the user a challenge packet containing a challenge value, usually
a few bytes.

2. The user applies a predefined function that takes the challenge value and the user's
own password and creates a result. The user sends the result in the response packet
to the system.

3. The system does the same. It applies the same function to the password of the user
(known to the system) and the challenge value to create a result. If the result created is
the same as the result sent in the response packet, access is granted; otherwise, it is
denied. CHAP is more secure than PAP, especially if the system continuously changes
the challenge value. Even if the intruder learns the challenge value and the result, the
password is still secret. Figure 11.37 shows the packets and how they are used.

Figure 11.37 CHAP packets encapsulated in a PPP frame

User
r~

= -

Challenge

Response

Success or failure

System

~

2 Variable Variable

Address -~J)l{623 s_,
-,:. :::~~- -.:< -. ...,--

Payload
(and padding)

CHAP packets

FCS Flag

CHAP packets are encapsulated in the PPP frame with the protocol value C223 in
hexadecimal. There are four CHAP packets: challenge, response, success, and failure.
The first packet is used by the system to send the challenge value. The second is used by
the user to return the result of the calculation. The third is used by the system to allow
access to the system. The fourth is used by the system to deny access to the system.

Network Control Protocols

PPP is a multiple-network layer protocol. It can carry a network layer data packet from
protocols defined by the Internet, OSI, Xerox, DECnet, AppleTalk, Novel, and so on.

354 CHAPTER 11 DATA LINK CONTROL

To do this, PPP has defined a specific Network Control Protocol for each network pro
tocol. For example, IPCP (Internet Protocol Control Protocol) configures the link for
carrying IP data packets. Xerox CP does the same for the Xerox protocol data packets,
and so on. Note that none of the NCP packets carry network layer data; they just
configure the link at the network layer for the incoming data.

IPCP One NCP protocol is the Internet Protocol Control Protocol (IPCP). This
protocol configures the link used to carry IP packets in the Internet. IPCP is especially
of interest to us. The format of an IPCP packet is shown in Figure 11.38. Note that the
value of the protocol field in hexadecimal is 8021.

Figure 11.38 fPCP packet encapsulated in PPP frame

Variable

Payload
(and padding) FCS Flag

IPCP defines seven packets, distinguished by their code values, as shown in
Table 11.4.

Table 11.4 Code value for IPCP packets

Code IPCP Packet

OxO! Configure-request

Ox02 Configure-ack

Ox03 Configure-nak

Ox04 Configure-reject

Ox05 Terminate-request

Ox06 Terminate-ack

Ox07 Code-reject

Other Protocols There are other NCP protocols for other network layer protocols.
The OSI Network Layer Control Protocol has a protocol field value of 8023; the Xerox
NS IDP Control Protocol has a protocol field value of 8025; and so on. The value of the
code and the format of the packets for these other protocols are the same as shown in
Table 11.4.

Data/rom the Network Layer

After the network layer configuration is completed by one of the NCP protocols, the
users can exchange data packets from the network layer. Here again, there are different

SECTION 11.7 POINT-TO-POINT PROTOCOL 355

protocol fields for different network layers. For example, if PPP is carrying data from
the IP network layer, the field value is 0021 (note that the three rightmost digits are the
same as for IPCP). If PPP is carrying data from the OSI network layer, the value of the
protocol field is 0023, and so on. Figure 11.39 shows the frame for IP.

Figure 11.39 IP datagram encapsulated in a PPP frame

User data

Payload
(and padding)

FCS Flag

Multilink PPP

PPP was originally designed for a single-channel point-to-point physical link. The avail
ability of multiple channels in a single point-to-point link motivated the development of
Multilink PPP. In this case, a logical PPP frame is divided into several actual PPP
frames. A segment of the logical frame is carried in the payload of an actual PPP frame,
as shown in Figure 11.40. To show that the actual PPP frame is carrying a fragment of a

Figure 11.40 Multilink PPP

Channel 2

Channell

PPP

Logical PPP

O
r-----

. Payload

PPP

Protocol filed: Ox003d

logical PPP frame, the protocol field is set to Ox003d. This new development adds com
plexity. For example, a sequence number needs to be added to the actual PPP frame to
show a fragment's position in the logical frame.

Example 11.12

Let us go through the phases followed by a network layer packet as it is transmitted through a
PPP connection. Figure 11.41 shows the steps. For simplicity, we assume unidirectional move
ment of data from the user site to the system site (such as sending an e-mail through an ISP).

356 CHAPTER 11 DATA LINK CONTROL

Figure 11.41 An example

User

[I
~

System

i
. Configure-request
~ Options

. LeI'

Authenticate-ack

§ITIr] Name

PAP

Authenticate-request

C023-~ Name O-P-a-ss-w-o-rd-I

PAP

Configure-request· :

gOZL~ Options

IPCp·

Terminate-request

. CQ21:-~ Options

LCP

[

y
Time

y
Time

SECTION 11.9 KEY TERMS 357

The first two frames show link establishment. We have chosen two options (not shown in the
figure): using PAP for authentication and suppressing the address control fields. Frames 3 and 4
are for authentication. Frames 5 and 6 establish the network layer connection using IPCP.

The next several frames show that some IP packets are encapsulated in the PPP frame. The
system (receiver) may have been running several network layer protocols, but it knows that the
incoming data must be delivered to the IP protocol because the NCP protocol used before the data
transfer was IPCP.

After data transfer, the user then terminates the data link connection, which is acknowledged
by the system. Of COUrse the user or the system could have chosen to terminate the network layer
IPCP and keep the data link layer running if it wanted to run another NCP protocol.

The example is trivial, but it points out the similarities of the packets in LCP, AP, and
NCP. It also shows the protocol field values and code numbers for particular protocols.

11.8 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books. The items in brackets [...] refer to the reference list at the end of the text.

Books

A discussion of data link control can be found in [GW04], Chapter 3 of [Tan03], Chapter 7
of [Sta04], Chapter 12 of [Kes97], and Chapter 2 of [PD03]. More advanced materials can
be found in [KMK04].

11.9 KEY TERMS
acknowledgment (ACK)

asynchronous balanced mode (ABM)

automatic repeat request (ARQ)

bandwidth-delay product

bit-oriented protocol

bit stuffing

byte stuffing

Challenge Handshake Authentication
Protocol (CHAP)

character-oriented protocol

data link control

error control

escape character (ESC)

event

fixed-size framing

flag

flow control

framing

Go-Back-N ARQ Protocol

High-level Data Link Control (HDLC)

information frame (I-frame)

Internet Protocol Control Protocol (IPCP)

Link Control Protocol (LCP)

negative acknowledgment (NAK)

noiseless channel

noisy channel

normal response mode (NRM)

Password Authentication Protocol (PAP)

piggybacking

pipelining

Point-to-Point Protocol (PPP)

primary station

358 CHAPTER 11 DATA LINK CONTROL

receive sliding window

secondary station

Selective Repeat ARQ
Protocol

send sliding window

sequence number

Simplest Protocol

sliding window

Stop-and-Wait ARQ Protocol

Stop-and-Wait Protocol

supervisory frame (S-frame)

transition phase

unnumbered frame (D-frame)

variable-size framing

11.10 SUMMARY
o Data link control deals with the design and procedures for communication between

two adjacent nodes: node-to-node communication.

o Framing in the data link layer separates a message from one source to a destination,
or from other messages going from other sources to other destinations,

o Frames can be of fixed or variable size. In fixed-size framing, there is no need for
defining the boundaries of frames; in variable-size framing, we need a delimiter
(flag) to define the boundary of two frames.

o Variable-size framing uses two categories of protocols: byte-oriented (or character
oriented) and bit-oriented. In a byte-oriented protocol, the data section of a frame
is a sequence of bytes; in a bit-oriented protocol, the data section of a frame is a
sequence of bits.

o In byte-oriented (or character-oriented) protocols, we use byte stuffing; a special
byte added to the data section of the frame when there is a character with the same
pattern as the flag.

o In bit-oriented protocols, we use bit stuffing; an extra 0 is added to the data section
of the frame when there is a sequence of bits with the same pattern as the flag.

o Flow control refers to a set of procedures used to restrict the amount of data that the
sender can send before waiting for acknowledgment. Error control refers to methods
of error detection and correction.

o For the noiseless channel, we discussed two protocols: the Simplest Protocol and
the Stop-and-Wait Protocol. The first protocol has neither flow nor error control;
the second has no error control. In the Simplest Protocol, the sender sends its
frames one after another with no regards to the receiver. In the Stop-and-Wait Pro
tocol, the sender sends one frame, stops until it receives confirmation from the
receiver, and then sends the next frame.

D For the noisy channel, we discussed three protocols: Stop-and-Wait ARQ, 00
Back-N, and Selective Repeat ARQ. The Stop-and-Wait ARQ Protocol, adds a
simple error control mechanism to the Stop-and-Wait Protocol. In the Oo-Back-N
ARQ Protocol, we can send several frames before receiving acknowledgments,
improving the efficiency of transmission. In the Selective Repeat ARQ protocol we
avoid unnecessary transmission by sending only frames that are corrupted.

D Both Oo-Back-N and Selective-Repeat Protocols use a sliding window. In 00
Back-N ARQ, if m is the number of bits for the sequence number, then the size of

SECTION 11.11 PRACTICE SET 359

the send window must be less than 2m; the size of the receiver window is always 1.
In Selective Repeat ARQ, the size of the sender and receiver window must be at
most one-half of 2m.

o A technique called piggybacking is used to improve the efficiency of the bidirec
tional protocols. When a frame is carrying data from A to B, it can also carry control
information about frames from B; when a frame is carrying data from B to A, it can
also carry control information about frames from A.

o High-level Data Link Control (HDLC) is a bit-oriented protocol for communication
over point-to-point and multipoint links. However, the most common protocols for
point-to-point access is the Point-to-Point Protocol (PPP), which is a byte-oriented
protocol.

11.11 PRACTICE SET

Review Questions

1. Briefly describe the services provided by the data link layer.

2. Define framing and the reason for its need.

3. Compare and contrast byte-oriented and bit-oriented protocols. Which category
has been popular in the past (explain the reason)? Which category is popular now
(explain the reason)?

4. Compare and contrast byte-stuffing and bit-stuffing. Which technique is used in
byte-oriented protocols? Which technique is used in bit-oriented protocols?

5. Compare and contrast flow control and error control.

6. What are the two protocols we discussed for noiseless channels in this chapter?

7. What are the three protocols we discussed for noisy channels in this chapter?

8. Explain the reason for moving from the Stop-and-Wait ARQ Protocol to the 00
Back-N ARQ Protocol.

9. Compare and contrast the Go-Back-N ARQ Protocol with Selective-RepeatARQ.

10. Compare and contrast HDLC with PPP. Which one is byte-oriented; which one is
bit-oriented?

11. Define piggybacking and its usefulness.

12. Which of the protocols described in this chapter utilize pipelining?

Exercises

13. Byte-stuff the data in Figure 11.42.

Figure 11.42 Exercise 13

360 CHAPTER 11 DATA LINK CONTROL

14. Bit-stuff the data in Figure 11.43.

Figure 11.43 Exercise 14

1000111111100111110100011111111111000011111 I

15. Design two simple algorithms for byte-stuffing. The first adds bytes at the sender;
the second removes bytes at the receiver.

16. Design two simple algorithms for bit-stuffing. The first adds bits at the sender; the
second removes bits at the receiver.

17. A sender sends a series of packets to the same destination using 5-bit sequence
numbers. If the sequence number starts with 0, what is the sequence number after
sending 100 packets?

18. Using 5-bit sequence numbers, what is the maximum size of the send and receive
windows for each of the following protocols?

a. Stop-and-Wait ARQ

b. Go-Back-N ARQ

c. Selective-Repeat ARQ

19. Design a bidirectional algorithm for the Simplest Protocol using piggybacking.
Note that the both parties need to use the same algorithm.

20. Design a bidirectional algOIithm for the Stop-and-Wait Protocol using piggybacking.
Note that both parties need to use the same algorithm.

21. Design a bidirectional algorithm for the Stop-and-Wait ARQ Protocol using piggy
backing. Note that both parties need to use the same algorithm.

22. Design a bidirectional algorithm for the Go-Back-N ARQ Protocol using piggy
backing. Note that both parties need to use the same algorithm.

23. Design a bidirectional algorithm for the Selective-Repeat ARQ Protocol using piggy
backing. Note that both parties need to use the same algorithm.

24. Figure 11.44 shows a state diagram to simulate the behavior of Stop-and-Wait ARQ
at the sender site.

Figure 11.44 Exercise 24

A

The states have a value of Sn (0 or 1). The arrows shows the transitions. Explain the
events that cause the two transitions labeled A and B.

SECTION 11.11 PRACTICE SET 361

25. Figure 11.45 shows a state diagram to simulate the behavior of Stop-and-Wait
ARQ at the receiver site.

Figure 11.45 Exercise 25

A

The states have a value of Rn (0 or 1). The arrows shows the transitions. Explain
the events that cause the two transitions labeled A and B.

26. In Stop-and-Wait ARQ, we can combine the state diagrams of the sender and
receiver in Exercises 24 and 25. One state defines the combined values of Rn and Sn
This means that we can have four states, each defined by (x, y), where x defines the
value of Sn and y defines the value of Rw In other words, we can have the four
states shown in Figure 11.46. Explain the events that cause the four transitions
labeled A, B, C, and D.

Figure 11.46 Exercise 26

27. The timer of a system using the Stop-and-Wait ARQ Protocol has a time-out of 6 ms.
Draw the flow diagram similar to Figure 11.11 for four frames if the round trip delay
is 4 ms. Assume no data frame or control frame is lost or damaged.

28. Repeat Exercise 27 if the time-out is 4 ms and the round trip delay is 6.

29. Repeat Exercise 27 if the first frame (frame 0) is lost.

30. A system uses the Stop-and-Wait ARQ Protocol. If each packet carries 1000 bits of
data, how long does it take to send 1 million bits of data if the distance between the
sender and receiver is 5000 KIn and the propagation speed is 2 x 108 m? Ignore trans
mission, waiting, and processing delays. We assume no data or control frame is lost
or damaged.

31. Repeat Exercise 30 using the Go-back-N ARQ Protocol with a window size of 7.
Ignore the overhead due to the header and trailer.

32. Repeat Exercise 30 using the Selective-Repeat ARQ Protocol with a window
size of 4. Ignore the overhead due to the header and the trailer.

